THE DISTRIBUTION OF ELECTRIC POTENTIAL IN A
CHANNEL WITH CONTINUOUS ELECTRODES FOR
LARGE MAGNETIC REYNOLDS' NUMBERS

A, E. Konovalov

It has been noted in the series {1, 3] that magnetic boundary layers are formed close to the walls
when a conducting gas flows in a transverse magnetic field. If the exchange parameter [4] is small, then
a dissipative layer arises on the electrode, increasing along the length of the electrode. It was shown in
[1] that for the case of electrodes with weak longitudinal conductivity a boundary layer next to the anode is
formed wheun there is a strongly marked Hall effect.

A channel with continuous electrodes was treated in [6], where the electric current distribution was
determined using the method of matching asymptotic expansions [6].

This method is used below to find the electric potential distribution in a channel with continuous
electrodes, while processes in the region next to the electrode connected with ionization and emission of
electrons by the cathode are not considered. The linearized problem is solved in which the perturbation of
flow by the boundary conditions is small.

1. We consgider the motion of a nonviscous, nonthermally-conducting gas of high electrical conduc~
tivity in a flat channel which departs by only a small amount from a rectilinear channel of coustant cross
section. Let the external transverse magnetic field H(0, 0, Hy) be uniform and constant. The distribution
of gas-dynamic parameters in the channel is taken to be uniform for x = 0. The upper and lower walls of
the channel y = h + f(x}, y = f; (x) for x > 0 are electrodes.

The distribution of parameters would remain uniform everywhere in a channel of counstant cross

section f (x) = f;(x) =0, Inthis case the induced emf is balanced by the potential difference created by
the external source and applied to the electrodes.

If the cross section varies along the length of the channel, then electric currents flow in the channel
and electromagnetic forces act on the gas. The parameter distribution becomes nonuniform.

Following [7], we carry out a linearization with respect to the small parameter € (f ~ ¢h) about the
solution for a channel of constant cross section

u=1, v=0,p=41,T=1, H=1,¢=—y (1.1)

Here and in what follows the longitudinal and transverse velocity components u and v are given as
ratios of the characteristic velocity u,;the density and temperature as ratios of p, Tx; the magnetic field
strength as a ratio of the constant applied field Hy; the electric potential as a ratio of uy, Hy, h/c; and the
coordinates xandy as ratios of the channel height h. (Parameter values at the entrance to the electrode
section of the channel are taken as the characteristic quantities and are denoted by an asterisk.)

After linearizing quantities from the first approximation we have the following system of equations:

du L dp _ 4,0H 9% 1 0% AM® o

E3 18z oz ' Gz*  MEP—-1d8y  MP—1ézoy

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol, 11, No. 2, pp.
4246, March-April, 1970. Original article submitted June 13, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

233



0.6

g ' ‘ N 7
L i
b4 L j 0.5 V/
' !
y e il 4} 1 -
- 04 -0z 0 0% 4k 0
Fig. 1 Fig. 2
do _ AM2OH M av U Ay M 00 MP(—AY—10H
P Mi—-1dz MEi—1idy'® R, = M*—1dy =1 oz
ol M aw AR B o9
A‘P—B(Mz—i‘a‘y‘_m—i'ﬁ)“L 'n<”a?"v) (1.2)

bnsuh H* u
R, = * A= M= * )
( " ¢ uy Ving, '’ VART,

Here the Hall parameter for electrons 8 is determined from H_; the conductivity ¢ and ratio of
specific heats y are constant; R is the gas constant;and c is the velocity of light.

This system, with the exception of the last equation, was treated in [5] for finding electric currents.
The dimensionless parameters are the magnetic Reynolds' number and the Alfven and Mach numbers.

If Ry, is large, then an expansion of v and H in powers of Rm"1 gives the following equations from
the corresponding equations of system (1.2):
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Here M, is the Mach number for the fast magnetoacoustic wave. In what follows ouly the case M, >
1 will be treated as in [5].

The first equation of (1.4) enables us to conclude qualitatively that a vertical velocity component
(vi~—Jy° Jy° ~ 8H°/dy) arises under the action of volume forces. A decrease of density at the anode
and an increase at the cathode occurs in the case of negative J.°. There is a downwash in the upward

direction,

There are no volume forces in the zero-th approximation (1.3). A vertical velocity component arises
as the result of velocity perturbation at the walls, which can come about as the result of a slight deformation
of the walls, flowing in of fluid, electromagnetic forces, etc.

By way of an example, we consider a channel with an upper wall of the form given by the equation
y =1 + 7 (x), and the lower wall by the equation y = 0.

The first equation of (1.3) has the following boundary conditions:
z=0, =0 y=0, ¥ =0; y=1, P = f ()
The solution of (1.3) is given in [5]. It has the following form for the initial section of the channel:

=%, —x, H°= —-A—l%igm—M_), Koo = % (% — % = %Y)
(1.5)

1@ =0, z<0; x@)=/(z), >0, w=YM7T—"1
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The potential for R, »>1 and finite B/Rm is obtained from (1.2) and {1.3)

_\\ ¢° = S
0
;@_\
s T 2. The solution obtained H°, ¢° does not satisfy the boundary conditions at
L——'x the electrodes:
> > ek o
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=0, ¢ = const (2.1)

To find a solution which would also fit close to the electrode, we use the method of matching asymp-
totic expansions [6]. According to this method, the external expansion obtained must be matched with the
internal expansion.

The internal expansion is obtained with the help of the new variables
Y=yVR, V=VR,v—v ()]
where v° is the velocity at the wall. [With this choice of variables 8V/8Y is of the order of unity, see (2.3).]

We have from (1.2)
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Terms of the order 1/vVRy,, 1/Ry, are rejected. The equation for the velocity is integrated with
respect to Y:

OVIeY = A2M?3H/dz 1-r (z) (2.3)
Using the condition for matching with the external expansion for velocity, we find
r(z) = (1 —M* / M?20H" | ox

It follows from (2.3) that the velocity change in the current layer is of the order 1/VRp,. Thus, the
velocity in the equation for the potential (2.2) turus out to be equal to the velocity at the wall.

Eliminating 8V/9Y from the induction and potential equations, we have

__ 1 ®H_0H oH° re_ B Az]/[-z_aﬁ__Mf_éﬂn]
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(2.4)

The boundary condition for the magnetic field in the case of a straight electrode is transformed as
follows:

1 oH B oH oH
Vi or R, w0 % =0 fo Ru—e
We now formulate boundary conditions for the lower electrode (v° (x) =0):
Y =0, 0H/3z=0, 9=0; Y — o, H—H (z), 9 — ¢°(2) (2.5)
The initial conditions are

z =0, =0, o=20

3. The form of the wall f (x) must be specified for concrete calculations. Iet f (x) = 1/2 ex?. We

shall find the potential distribution in the region next to the lower electrode (anode) for the initial section
of the channel = x =2u.

235



Equation (2.4) with conditions (2.5) is solved with the help of a Laplace integral transform {8].

%M,
g ="t }%—x(——i—l—(l—l—%z)]ﬂrf(z)——-—;—E‘::ze"zz)

- (3.1)
e=y/@8 Vz), 8=1/V Ry(+4AM%), Erf(z)=1—erf(2)

Here erf (z) is the error function and 6 is the characteristic thickness of the current layer [5]. The
coordinate origin is situated at the point x =«

The variation of potential near the electrode is shown in Fig. 1 for x= 0.5, 6 = 0.02. It is clear from
Fig. 1 that the potential varies sharply at a distance of order § from the electrode.

The electric field strength Ey reaches a maximum value at the electrode
, — ;
¥y =0, E, =7§g -—12—:8 . E == 268 R, 1M 2 (3.2)
The magnitude of the pofential change in the current layer is proportional fo the exchange parameter

4] .

4, We consider the case when the channel walls are straight and a perturbation is introduced by
changing the potential difference @A applied to the electrodes. When the solution of system (1.2) for v, H,
¢ 1is expanded in terms of 1/Ryy,, the zero~-th approximation gives vW=0,H =0, <p° =0,

The solution ¢ = 0, which is the external expansion, does not satisfy the boundary condition ¢ = A
at the electrode. As in the preceding sections, a full solution is found by matching the external and internal
expansions

?=¢a [1 — erf (sz;?)] 4.1)

Thus, the potential difference applied to the electrodes turns out to be concentrated in the region next
to the electrode in accordance with the concepts of potential distribution in a channel given in [9]. The
thickness of this regioun is of the order 1/VR .

A solution is obtained in the form of a sum of (3.1) and (4.1) in the case of a curved wall and the
presence of a potential perturbation at the electrodes., This can be seen if we use the system of solution
of Secs. 1~3 with the appropriate boundary conditions for the potential.

The changes of potential next to the wallare illustrated in Fig. 2. Here ¢y is the sum of ¢/ A and
¢/t . The calculations were carried out for 6; = VR =0.1, 6 =0.02,9p = £/2.

It is clear from Fig. 2 that the potential variation close to the electrode is characterized by two
dimensions 6 and 6,the thickness of the current layer.

From what has been explained above the potential distribution in the channel can be represeunted as
shown in Fig. 3. Instead of weak discoutinuities, the potential is assumed to change continuously in a thin
layer of thickness of the order &4 [5].
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