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It has been noted in the s e r i e s  [1, 3] that magnet ic  boundary l a y e r s  a re  fo rmed  close to the walls 
when a conducting gas  flows in a t r a n s v e r s e  magnetic  f ield.  If the exchange p a r a m e t e r  [4] is  sma l l ,  then 
a d i s s ipa t ive  l aye r  a r i s e s  on the e l e c t rode ,  i nc r e a s i ng  along the length of the e l e c t r ode .  It was shown in 
[1] that for  the case  of e l e c t r o d e s  with weak longitudinal conduct ivi ty  a boundary l a y e r  next to the anode is  
f o r m e d  when there  is  a s t rong ly  marked  Hall effect .  

A channel with continuous e l ec t rodes  was t r e a t e d  in [5], where the e l e c t r i c  c u r r e n t  d i s t r ibu t ion  was 
de t e rmined  using the method of matching asympto t i c  expans ions  [6]. 

This method is  used  below to find the e l e c t r i c  potent ia l  d i s t r ibu t ion  in a channel with continuous 
e l e c t r o d e s ,  while p r o c e s s e s  in the region next to the e l ec t rode  connected with ionizat ion and e m i s s i o n  of 
e l e c t r o n s  by the cathode a re  not cons ide red .  The l i ne a r i z e d  p r ob l e m  is solved in which the pe r tu rba t ion  of 
flow by the boundary condit ions is  s m a l l .  

i~ We consider the motion of a nonviscous, nonthermally-conducting gas of high electrical conduc- 
tivity in a flat channel which departs by only a small amount from a rectilinear channel of constant cross 
section. Let the external transverse magnetic field H(0, 0, H,) be uniform and constant. The distribution 
of gas-dynamic parameters in the channel is taken to be uniform for x = 0. The upper and lower walls of 
the channel y = h +f(x), y =f1(x) for x > 0 are electrodes. 

The distribution of parameters would remain uniform everywhere in a channel of constant cross 
seetionf (x) - f l  (x) ---0. In this case the induced emf is balanced by the potential difference created by 
the external source and applied to the electrodes. 

the cross section varies along the length of the channel, then electric currents flow in the channel 
and electromagnetic forces act on the gas. The parameter distribution becomes nonuniform. 

Following [7], we carry out a linearization with respect to the small parameter e (f ~ eh) about the 
solution for a channel of constant cross section 

u = t, v = 0, p = t,  T = 1, H =  1, (p = --  g (1.1) 

Here and in what follows the longitudinal  and t r a n s v e r s e  veloci ty  components  u and v a re  given as  
r a t i o s  of the c h a r a c t e r i s t i c  veloci ty  u . ;  the dens i ty  and t e m p e r a t u r e  as r a t i o s  of p,, T, ;  the magnetic  f ie ld  
s t r eng th  as  a r a t i o  of the constant  appl ied  f ie ld H.;  the e l e c t r i c  potent ia l  as  a ra t io  of u . ,  H , ,  h/c;  and the 
coord ina tes  x a n d y  as  r a t i o s  of the channel height h. ( P a r a m e t e r  values  at  the en t rance  to the e l ec t rode  
sect ion of the channel  a re  taken as the c h a r a c t e r i s t i c  quant i t ies  and a re  denoted by an a s t e r i s k . )  

Af ter  l i nea r i z ing  quanti t ies  f rom the f i r s t  approx imat ion  we have the following s y s t e m  of equat ions:  

ou __ I oo _ A2 Olt O'v t O~v __ A~M ~ O~H 
Ox M 20x Ox ' Ox ~ " M e -  i Oy ~- M 2 - 1 0 x O y  
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Op A~M ~ OH M 2 Ov i A H  M ~ Ov M*(t--A~)--t OH 
0-"~ ~ M ~ -  i Ox M ~ -  i Oy ' R m  M ~ -  t Oy ~- M ~ -  t Ox 

M ~ A2M ~ 
A T  = ~ ( M  f f ~  t Ov OH 

R m  4~cm,h A - -  - -  
= c~ , , , ,V~-~p, '  M =  

(1.2)  

Here the Hall pa rame te r  for  e lect rons  fi is determined from H , ;  the conductivity (r and rat io of 
specific heats Y are constant; R is the gas constant ;and e is the velocity of light. 

This sys tem,  with the exception of the last equation, was t reated in [5] for finding e lec t r ic  cu r ren t s .  
The dimensionless  pa r ame te r s  are the magnetic Reynolds '  number and the Alfven and Mach numbers .  

If R m is la rge ,  then an expansion of v and H in powers of Rm-1 gives the following equations from 
the corresponding equations of sys tem (1.2): 

O~v ~ l 02v~ = O, Or~ ( i A~" I OH ~ M 
Ox z m + s - -  I Oy ~ ~ y  § ~ M ~ J Ox = 0 '  M.~ ~ .  ]/-i + A~M 2 (1.3) 

O~v___t l O~'v.__ t = _  A~M 2 0 AH o, (1.4) 
c3x 2 M+ ~ - -  t Oy" M S - -  l - -  AZM ~ Oy 

Ov~ , (~ t \OH1 i~ l w T  H As) - _  )A.o 

Here M+ is the Mach number for  the fast magnetoaeoustic wave. In what follows only the ease M+ > 
1 will be t reated as in [5]. 

The f i r s t  equation of (1.4) enables us to conclude qualitatively that a ver t ical  velocity component 
(v 1 ~ - j x  o, j x  o N 0HO/0y) a r i ses  under the action of volume forces .  A decrease  of density at the anode 
and an increase  at the cathode occurs  in the case of negative Jx ~ There is a downwash in the upward 
direction.  

There are no volume forces  in the ze ro - th  approximation (1.3). A ver t ical  velocity component a r i ses  
as the resul t  of velocity perturbat ion at the walls, which can come about as the resul t  of a slight deformation 
of the walls, flowing in of fluid, e lect romagnet ic  forces ,  etc.  

By way of an example,  we consider  a channel with an upper wall of the form given by the equation 
y = 1 + f  (x), and the lower wall by the equation y = 0. 

The f i rs t  equation of (1.3) has the following boundary conditions: 

x = O ,  v ~  y = O ,  v ~  y = l ,  v ~  

The solution of (1.3) is given in [5]. It has the following form for the initial section of the channel: 

v ~ = x+ - z_, H ~ M~: (X. + X_), Z+,- = Z ( x .  ~ • uV) 

X ( x ) = 0 ,  x < 0 ;  Z ( x ) = I ' ( z ) ,  x > 0 ;  ~ = V ~ - - L  

(1.5) 
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The potential for R m >> 1 and finite fi/R m is obtained from (1.2) and (1.3) 

L H  o (1.6) ~~ ~ ~ v~ + ~,~ 
0 

2. The solution obtained H ~ ip ~ does not satisfy the boundary conditions at 
the electrode s: 

OH OH 
Oy ~ x  == O, ~ - - c o n s t  (2.1) 

To find a solution which would also fit close to the e lectrode,  we use the method of matching asymp-  
totic expansions [6]. According to this method, the external  expansion obtained must be matched with the 
internal  expansion. 

The internal expansion is obtained with the help of the new variables 

Y = y V ~ ,  v = V ~ - J ~  - ~ o  (x)~ 

where v ~ is the velocity at the wall. 

We have f rom (1.2) 

[With this choice of variables  aV/OY is of the order  of unity, see (2~ 

i OeV t OW A2M z O~H 
R m OX ~ ~M ~ --  t OY ~ M 2 --  i OxOY 

{ OZH 02H M 2 OV , 31 ~ ( I - A  2 ) - t  011 
RmOx 2 .4:- Oy~ - M ~ _  I ~.~.~- "~'~2--~ Ox (2.2) 

i Ozq~ , O~ ~ ( .  M ~ OV A~'M ~ OH) O~p O ~  V 
R,n Ox' t Oy-"-~:R. m \M"---  i OY " M'~i O~x + ~ - -  V - ~  

Terms  of the order  1/R(R-~m, 1/R m are re jected.  The equation for the velocity is integrated with 
respec t  to Y: 

OV/OY = A 2 M  20H/Ox + r (x) (2.3) 

Using the condition for matching with the external  expansion for velocity, we find 

r ( x )  = (I - - M  2) / M+~OH ~ / Ox 

It follows from (2.3) that the velocity change in the cur ren t  layer is of the o rder  1/R/~mo Thus, the 
velocity in the equation for  the potential (2.2) turns out to be equal to the velocity at the wall. 

Eliminating aV/0Y from the induction and potential equations, we have 

i -+- A 'M'  OY' - -  Ox Ox ' OY' =" + ~ Ox M +• Ox J (2.4) 

The boundary condition for the magnetic field in the case of a straight electrode is t r ans formed  as 
follows: 

i Oil ~ o11 Oll 
V ~ 0 I >  n~ Oz = O or "~x = 0  :for Rm-+Co 

We now formulate boundary conditions for the lower electrode (v ~ (x) -= 0): 

Y = O ,  O H / O x = O ,  ~ = 0 ;  Y-~  co, H - ~ H  ~ q)-+~~ 

The initial conditions are  

(2.5) 

x = 0 ,  H = 0 ,  qD = 0  

3. The form of the w a l l f  (x) must be specified for concrete  calculations.  L e t f  (x) = 1/2 ~x2~ We 
shall find the potential distribution in the region next to the lower electrode (anode) for the initial section 
of the channel ~ _< x _< 2~. 
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Equation (2.4) with conditions (2.5) is solved with the help of a Laplace integral  t rans form [8]. 

r • R m  x -- 1 -t- (i + 2z ~) Err (z) -- ze -z~ 

z = y / ( 2 8  ]/'~), 5=i/~Rm(i-{-A~M~), Erf(z)=l--erf(z) 
(3.1) 

Here er r  (z) is the e r r o r  function and 5 is the charac te r i s t i c  thickness of the cur ren t  layer [5]. The 
coordinate origin is situated at the point x = ~ ~ 

The variation of potential near  the electrode is shown in Fig. 1 for x = 0.5, ~ = 0.02. It is c lear  f rom 
Fig. 1 that the potential var ies  sharply at a distance of order  5 f rom the e lect rode.  

The e lec t r ic  field strength Ey reaches  a maximum value at the electrode 

2 V~  
y ~- O, E v = - - ~  ~ - ~ - - ,  ~ = 2S~Rm-IM+~u -1 (3.2) 

The magnitude of the potential change in the cur ren t  layer  is proport ional  to the exchange pa rame te r  
[4] ,~. 

4. We consider  the case when the channel walls are  straight  and a perturbation is introduced by 
changing the potential difference ~vA applied to the e lec t rodes .  When the solution of sys tem (1.2) for v, H, 
~p is expanded in t e rms  of 1 /Rm,  the z e r o - t h  approximation gives v ~ - 0, H ~ = 0, (p0 = 0. 

The solution ~p0 - 0, which is the external  expansion, does not sat isfy the boundary condition (p = ~vn 
at the electrode~ As in the preceding sections,  a full solution is found by matching the external  and internal 
expansions 

Thus, the potential difference applied to the e lec t rodes  turns out to be concentrated in the region next 
to the electrode in accordance with the concepts of potential distribution in a channel given in [9]. The 
thickness of this region is of the order  1/Rv~R~m . 

A solution is obtained in the form of a sum of (3.1) and (4.1) in the case of a curved wall and the 
presence  of a potential per turbat ion at the e lec t rodes .  This can be seen if we use the sys tem of solution 
of Sees. 1-3 with the appropriate  boundary conditions for the potential.  

The changes of potential next to the wal lare  i l lustrated in Fig. 2. Here ~Z is the sum of (p/(pAand 
q~/~ . The calculations were ca r r i ed  out for 51 = 1 RV~m = 0.1, 5 = 0.02, (PA = ~/2. 

It is c lear  f rom Fig. 2 that the potential variation close to the electrode is cha rac te r i zed  by two 
dimensions 51 and 5,the thickness of the cur ren t  layer .  

F r o m  what has been explained above the potential distribution in the channel can be represen ted  as 
shown in Fig. 3. Instead of weak discontinuities,  the potential is assumed to change continuously in a thin 
layer  of thickness of the o rder  51 [5]. 

Finally,  the author wishes to thank G. M. Bam-Zelikovieh and A. B. Vatazhin for valuable advice, 
and G. G. Chernyi for useful comments .  
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